Sains Malaysiana 54(5)(2025): 1221-1229

http://doi.org/10.17576/jsm-2025-5405-02

Production of Canthin-6-One and Stigmasterol in Eurycoma longifolia (Tongkat Ali) Jack. Hairy Root Culture Transformed using Agrobacterium rhizogenes Strain A4
(Pengeluaran Canthin-6-One dan Stigmasterol dalam Eurycoma longifolia (Tongkat Ali) Jack. Kultur Akar Rerambut Diubah menggunakan Agrobacterium rhizogenes Strain A4)

NOR HASNIDA HASSAN1,*, LING SUI KIONG2, NAZIRAH ABDULLAH1 & NUR AINI MOHD KASSIM1

1Forestry Biotechnology Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
2Medicinal Plants Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia

Diserahkan: 28 Oktober 2023/Diterima: 8 Januari 2025

Abstract

Eurycoma longifolia, commonly known as Tongkat Ali or Malaysian ginseng, contains a variety of chemical compounds, including quassinoids, canthin-6-one alkaloids, B-carboline alkaloids, squalene derivatives, and steroids. These compounds contribute to the plant's therapeutic properties, which include anti-cancer, anti-malarial, anti-ulcer, aphrodisiac, and energy-boosting effects. Since many of these compounds are primarily extracted from the roots, overharvesting can threaten wild populations of E. longifolia. A sustainable approach to producing these chemical compounds involves cultivating hairy root cultures, which have been used successfully to produce chemical compounds in other plant species. In this study, hairy root cultures of E. longifolia were established using the Agrobacterium rhizogenes strain A4. The hairy roots were cultured in MS basal liquid medium at pH 4.9, under dark conditions on an orbital shaker (150 rpm) at 25 ± 2 °C. The production of two chemical compounds reported extracted from E. longifolia natural roots, canthin-6-one and stigmasterol, was confirmed in the extracts of the E. longifolia transformed hairy roots through High-Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) spectroscopy analysis. E. longifolia hairy roots culture can be used as an alternative source for these chemical compounds.

Keywords: Agrobacterium rhizogenes; chemical compounds; hairy roots; Tongkat Ali

Abstrak

Eurycoma longifolia yang dikenali sebagai Tongkat Ali atau ginseng Malaysia mengandungi pelbagai sebatian kimia, termasuk quassinoid, alkaloid canthin-6-one, alkaloid B-carboline, terbitan squalene dan steroid. Sebatian ini menyumbang kepada sifat terapeutik tumbuhan ini, termasuk kesan anti-kanser, anti-malaria, anti-ulser, afrodisiak dan peningkatan tenaga. Oleh kerana kesemua sebatian ini diekstrak terutamanya daripada akar, pengambilan secara berlebihan boleh mengancam populasi liar E. longifolia. Pendekatan yang mampan untuk menghasilkan sebatian kimia ini melibatkan penghasilan kultur akar rerambut yang telah berjaya digunakan untuk menghasilkan sebatian kimia dalam spesies tumbuhan lain. Dalam kajian ini, kultur akar rerambut E. longifolia telah dibangunkan menggunakan strain Agrobacterium rhizogenes A4. Kultur akar rerambut tersebut dikulturkan ke dalam medium cecair asas MS dengan pH 4.9, di bawah keadaan gelap atas penggoncang orbital (150 rpm) pada suhu 25 ± 2 °C. Penghasilan dua sebatian kimia yang dilaporkan diekstrak daripada akar semula jadi E. longifolia iaitu canthin-6-one dan stigmasterol, telah disahkan dalam ekstrak akar rerambut E. longifolia menggunakan Kromatografi Cecair Berprestasi Tinggi (HPLC) dan analisis spektroskopi Resonans Magnetik Nuklear (NMR). Kultur akar rerambut E. longifolia boleh digunakan sebagai sumber alternatif untuk penghasilan dua sebatian kimia ini.

Kata kunci: Agrobacterium rhizogenes; akar rerambut; metabolit sekunder; Tongkat Ali

RUJUKAN

Alfermann, A.W. & Petersen, M. 1995. Natural product formation by plant cell biotechnology. Results and perspective. Plant Cell Tissue and Organ Culture 43: 199-205.

Alpizar, E., Dechamp, E., Espeout, S., Royer, M., Lecouls, A.C., Nicole, M., Bertrand, B., Lashermes, P. & Etienne, H. 2006. Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Reports 25(9): 959-967.

Ang, H.H. & Sim, M.K. 1997. Eurycoma longifolia Jack enhances libido in sexually experienced male rats. Journal of Experimental Animal Science 46: 287-290.

Balakrishnan, B., Julkifle, A.L., Syed Alwee, S.S.R., Chan, L.K. & Subramaniam, S. 2012. The effect of strain virulence on Agrobacterium rhizogenes transformation efficiency in Eurycoma longifolia. Proceeding of the 2nd Annual International Conference Syiah Kuala University 2012 & The 8th IMT-GT Uninet Biosciences Conference Banda Aceh, 22-24 November 2012.

Boulanger, F., Berkaloff, A. & Richaud, F. 1986. Identification of hairy root loci in the T-regions of Agrobacterium rhizogenes Ri plasmids. Plant Molecular Biology 6: 271-279.

Bulgakov, V.P. 2008. Functions of rol genes in plant secondary metabolism. Biotechnology Advances 26(4): 318-324.

Burchi, G., Mercuri, A., Benedetti, L. & Giovanni, A. 1996. Transformation methods applicable to ornamental plants. Plant Tissue Culture and Biotechnology 2: 94-104.

Burkill, I.H. 1966. A Dictionary of the Economic Products of the Malay Peninsular. Vol 1 & 2. Kuala Lumpur: Ministry of Agriculture.

Cardarelli, M., Mariotti, D., Pomponi, M., Spanò, L., Capone, I. & Costantino, P. 1987. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Molecular and General Genetics 209: 475-480.

Chan, K.L., O’Neill, M.J, Philipson, J.D. & Warhurst, D.C. 1986. Plants as source of antimalarial drugs. Part 3. Eurycoma longifolia. Planta Medica 52(2): 105-107.

Chaingam, J., Juengwatanatrakul, T., Yusakul, G., Kanchanapoom, T. & Putalun, W. 2021. HPLC-UV-Based simultaneous determination of canthin-6-one alkaloids, quassinoids, and scopoletin: The active ingredients in Eurycoma longifolia Jack and Eurycoma harmandiana Pierre, and their anti-inflammatory activities. Journal of AOAC International 104(3): 802-810.

Chávez-Vela, N., Chávez-Ortiz, L. & Pérez-Molphe Balch, E. 2003. Genetic transformation of sour orange using Agrobacterium rhizogenes. Agrociencia 37: 629-639.

Chilton, M.D., Tepfer, D.A., Petit, A., David, C., Casse-Debart, F. & Tempe, J. 1982. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295: 432-434.

Choo, C.Y. & Chan, K.L. 2002. High performance liquid chromatography analysis of canthinone alkaloids from Eurycoma longifolia. Planta Medica 68: 382-384.

Choonong, R., Ruangdachsuwan, S., Churod, T., Palabodeewat, S., Punyahathaikul, S., Juntarapornchai, S., Ketsuwan, K., Komaikul, J., Masrinoul, P., Kitisripanya, T., Juengwatanatrakul, T., Yusakul, G., Kanchanapoom, T. & Putalun, W. 2022. Evaluating the in vitro efficacy of quassinoids from Eurycoma longifolia and Eurycoma harmandiana against common cold human coronavirus OC43 and SARS-CoV-2 using in-cell enzyme-linked immunosorbent assay. Journal of Natural Product 85(12): 2779-2788.

Christey, M.C. 2001. Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cellular and Developmental Biology Plant 37: 687-700.

Chua, L.S., Amin, N.A.M., Neo, J.C.H., Lee, T.H., Lee, C.T., Sarmidi, M.R. & Aziz, R.A. 2011. LC-MS/MS-based metabolites of Eurycoma longifolia (Tongkat Ali) in Malaysia (Perak and Pahang). Journal of Chromatography 879(32): 3909-3919.

Danial, M., Chan, L.K., Syed Alwee, S.S.R. & Subramaniam, S. 2012. Hairy roots induction from difficult-to-transform pharmacologically important plant Eurycoma longifolia using wild strains of Agrobacterium rhizogenes. Journal of Medicinal Plants Research 6(3): 479-487.

Gabay, O., Sanchez, C., Salvat, C., Chevy, F., Breton, M., Nourissat, G., Wolf, C., Jacques, C. & Berenbaum, F. 2010. Stigmasterol: A phytosterol with potential anti-osteoarthritic properties. Osteoarthritis and Cartilage 18: 106-116.

Giri, A. & Narasu, M.L. 2000. Transgenic hairy roots. Recent trends and applications. Biotechnology Advances 18(1): 1-22.

Hassan, N.H., Abdullah, R., Kiong, L.S., Ahmad, A.R., Abdullah, N., Zainudin, F., Ismail, H. & Rahman, A.S.S. 2012. Micropropagation and production of eurycomanone, 9-methoxycanthin-6-one and canthin-6-one in roots of Eurycoma longifolia plantlets. African Journal of Biotechnology 11: 6818-6825.

Kang, H.J., Anbazhagan, V.R., You, X.L., Moon, H.K., Yi, J.S. & Choi, Y.E. 2006. Production of transgenic Aralia elata regenerated from Agrobacterium rhizogenes-mediated transformed roots. Plant Cell, Tissue and Organ Culture 85(2): 187-196.

Kardono, L.B.S., Angerhofer, C.K., Tsauri, S., Padmawinata, K., Pezzuto, J.M. & Kinghorn, A.D. 1991. Cytototic and antimalarial constituents of the roots of Eurycoma longifolia. Journal of Natural Products 54(5): 1360-1367.

Kim, O.T., Bang, K.H., Shin, Y.S., Lee, M.J., Jung, S.J., Hyun, D.Y., Kim, Y.C., Seong, N.S., Cha, S.W. & Hwang, B. 2007. Enhanced production of asiaticoside from hairy root cultures of Centella asiatica (L.) urban elicited by methyl jasmonate. Plant Cell Reports 26(11): 1941-1949.

Kuo, P.C., Damu, A.G., Lee, K.H. & Wu, T.S. 2004. Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia. Bioorganic and Medicinal Chemistry 12: 537-544.

Mishiba, K.I., Nishihara, M., Abe, Y., Nakatsuka, T., Kawamura, H., Kodama, K., Takesawa, T., Abe, J. & Yamamura, S. 2006. Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnology 23(1): 33-38.

Mitsunaga, K., Koike, K., Tanaka, T., Ohkawa, Y., Kobayashi, Y., Sawaguchi, T. & Ohmoto, T. 1994. Canthin-6-one alkaloids from Eurycoma longifolia. Phytochemistry 35(3): 799-802.

Moore, L., Warren, G. & Strobel, G. 1979. Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2: 617-626.

Morteza, A., Seyed, M.F.T. & Masoud, M. 2008. Virulence of different strains of Agrobacterium rhizogenes on genetic transformation of four Hyoscyamus species. American-Eurasian Journal of Agricultural and Environmental Sciences 3(5): 759-763.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology 15: 473-497.

Nazirah, A., Nor Hasnida, H., Ismanizan, I., Norlia, B., Abdul Rashih, A., Muhammad Fuad, Y. & Mohd Saifuldullah, A.W. 2018. Production of 9-methoxycanthin-6-one in elicited Eurycoma longifolia hairy root. Journal of Tropical Forest Science 30(4): 606-614.

Ngoc, P.B. Pham, T.B., Nguyen, H.D., Tran, T.T., Chu, H.H., Chau, V.M., Lee, J-H. & Nguyen, T.D. 2015. A new anti-inflammatory β-carboline alkaloid from the hairy-root cultures of Eurycoma longifolia. Natural Product Research 30(12): 1360-1365.

Nguyen, C., Yan, W., Le Tacon, F.Y. & Lapayrie, F. 1992. Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of ectomycorrhizal fungus Laccaria bicolor (Maire). P.D. Orton. Plant Soil 143: 193-199.

Oksman-Caldentey, K. & Hiltunen, R. 1996. Transgenic crops for improved pharmaceutical products. Field Crops Research 45(1-3): 57-69.

Rehman, S.U., Choe, K. & Yoo, H.H. 2016. Review on a traditional herbal medicine, Eurycoma longifolia Jack (Tongkat Ali): Its traditional uses, chemistry, evidence-based pharmacology and toxicology. Molecules 21(3): 331.

Sharma, P., Padh, H. & Shrivastava, N. 2013. Hairy root cultures: A suitable biological system for studying secondary metabolic pathways in plants. Engineering in Life Sciences 13(1): 62-67.

Sheng, J. & Citovsky, V. 1996. Agrobacterium-plant cell DNA transport: Have virulence proteins, will travel. Plant Cell 8(10): 1699-1710.

Shkryl, Y.N., Veremeichik, G.N., Bulgakov, V.P., Tchernoded, G.K., Mischenko, N.P., Fedoreyev, S.A. & Zhuravlev, Y.N. 2008. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calliBiotechnology and Bioengineering 100(1): 118-125.

Shreni Agrawal, E.R. 2022. A review: Agrobacterium-mediated gene transformation to increase plant productivity. The Journal of Phytopharmacology 11(2): 111-117.

Tada, H., Yasuda, F., Otani, K. & Doteuchi, M. 1991. New antiulcer quassinoids from Eurycoma longifolia. European Journal of Medicinal Chemistry 26: 345-349.

Tambi, M. & Kadir, A. 2006. Eurycoma longifolia Jack: A potent adaptogen in the form of water-soluble extract with the effect of maintaining men’s health. Asian Journal of Andrology 8: 49-50.

Tao, J. & Li, L. 2006. Genetic transformation of Torenia fournieri L. mediated by Agrobacterium rhizogenes. South African Journal of Botany 72: 211-216.

Tripathi, L. & Tripathi, J.N. 2003. Role of biotechnology in medicinal plants. Tropical Journal of Pharmaceutical Research 2: 243-253.

Van der Salm, T.P.M., Bouwer, R., van Dijk, A.J., Keizer, L.C.P., Hänisch ten Cate, C.H., van der Plas, L.H.W. & Dons, J.J.M. 1998. Stimulation of scion bud release by rol gene transformed rootstocks of Rosa hybrida L. Journal of Experimental Botany 49(322): 847-852.

Yeoman, M.M. & Yeoman, C.L. 1996. Manipulating secondary metabolites in cultured plant cells. New Phytologist 134: 553-569.

Yunos, N.M., Amin, N.D.M., Jauri, M.H., Ling, S.K., Hassan, N.H. & Sallehudin, N.J. 2022. The in vitro anti-cancer activities and mechanisms of action of 9-Methoxycanthin-6-one from Eurycoma longifolia in selected cancer cell lines. Molecules 27(3): 585.

Zhang, Y., Zhao, W., Ruan, J., Wichai, N., Li, Z., Han, L., Zhang, Y. & Wang, T. 2020. Anti-inflammatory canthin-6-one alkaloids from the roots of Thailand Eurycoma longifolia Jack. Journal of Natural Medicine 74(4): 804-810.

*Pengarang untuk surat-menyurat; email:hasnida@frim.gov.my 

 

 

 

 

 

 

 

           

sebelumnya